Account Menu

IP Address:

Case Study: Tinnitus with Distortion


A periodically appearing low-frequency tinnitus is one of my least favorite signals. A doctor’s visit only resulted in a WONTFIX and the audiogram shown here, which didn’t really answer any questions. Also, the sound comes with some pecularities that warrant a deeper analysis. So it shall become one of my absorptions.

The possible subtype (Vielsmeier et al. 2012) of tinnitus I have, related to a joint problem, is apparently even more poorly understood than the classical case (Vielsmeier et al. 2011), which of course means I’m free to make wild speculations! And maybe throw a supporting citation here and there.

Here’s a simulation of what it sounds like. The occasional frequency shifts are caused by head movements. (There’s only low-frequency content, so headphones will be needed; otherwise it will sound like silence.)
(HTML5 audio: computer-generated low-frequency tone on the right channel with some frequency shifts.)

It’s nothing new, save for the somewhat uncommon frequency. Now to the weird stuff.

Real-life audio artifacts!

This analysis was originally sparked by a seemingly unrelated observation. I listen to podcasts and documentaries a lot, and sometimes I’ve noticed the voice sounding like it had shifted up in frequency, for just a small amount. It would resemble an across-the-spectrum linear shift that breaks the harmonic relationships, much like when listening to a SSB transmission. (Simulated sound sample from a podcast below.)
[HTML5 audio: excerpt from a science news podcast with distorted speech.]

I always assumed this was a compression artifact of some kind. Or maybe broken headphones. But one day I also noticed it in real life, when a friend was talking to me! I had to ask her repeat, even though I had heard her well. Surely not a compression artifact. Of course I immediately associated it with the tinnitus that had been quite strong that day. But how could a pure tone alter the whole spectrum so drastically?
Amplitude modulation?

It’s known that a signal gets frequency-shifted when amplitude-modulated, i.e. multiplied in the time domain, by a steady sine wave signal. This is a useful effect in the realm of radio, where it’s known as heterodyning. My tinnitus happens to be a near-sinusoidal tone at 65 Hz; if this got somehow multiplied with part of the actual sound somewhere in the auditory pathway, it could explain the distortion.

Where could such a multiplication take place physically? I’m guessing it should be someplace where the signal is still represented as a single waveform. The basilar membrane in the cochlea already mechanically filters the incoming sound into frequency bands one sixth of an octave wide for neural transmission (Schnupp et al. 2012). Modulating one of these narrow bands would likely not affect so many harmonics at the same time, so it should either happen before the filtering or at a later phase, where the signal is still being handled in a time-domain manner.

I’ve had several possibilities in mind:

The low frequency tone could have its origins in actual physical vibration around the inner ear that would cause displacement of the basilar membrane. This is supported by a subjective physical sensation of pressure in the ear accompanying the sound. How it could cause amplitude modulation is discussed later on.
A somatosensory neural signal can cause inhibitory modulation of the auditory nerves in the dorsal cochlear nucleus (Young et al. 1995). If this could happen fast enough, it could lead to amplitude modulation of the sound by modulating the amount of impulses transmitted; assuming the auditory nerves still carry direct information about the waveform at this point (they sort of do). Some believe the dorsal cochlear nucleus is exactly where the perceived sound in this type of tinnitus also originates (Sanchez & Rocha 2011).

Continue reading article – HERE

, ,