Account Menu

IP Address: 195.154.151.123
The US government is to give up control of the administration of the internet, handing over responsibility for the IP numbering network and domain name system (DNS) to the global community...Read more

Eugenics, Ready or Not

By: Quadrant.org.au

A legal, social and biological revolution is taking place worldwide without much serious thinking of the consequences. Consider this: in Britain the House of Commons recently approved the use of “three-parent IVF” to remove defective mitochondrial DNA from babies.[1]

Each year in Britain about 100 children are born with mutated mitochondrial DNA, resulting in about ten cases of fatal disease to the liver, nerves or heart. A new in vitro fertilisation (IVF) technique developed at the University of Newcastle allows doctors to replace a mother’s defective mitochondrial DNA with that of a healthy donor, presumably using pre-implantation sequencing and microscopic operation on the zygote. Mitochondrial DNA does not affect appearance, personality or intelligence, and it reduces kinship—genetic similarity—by only about 1 per cent. Still, the resulting child, though its nuclear DNA would come from its main parents, would have three parents.

Critics warned that this would set society off down a slippery slope to eugenics and “designer babies”. A government official, the “British Fertility Regulator”, replied to this warning with the observation that most people support the therapy. This was intended to assuage the concerns expressed. In fact it would seem to confirm them, since widespread support for a product or service indicates a readiness to adopt it. Sure enough, though there had been little public discussion in advance of the Commons debate, the new techniques were nonetheless approved by a large parliamentary majority. Australian scientists have since called for the British policy to be emulated.[2]

Despite half a century of warnings by moral conservatives, advances in genetics and reproductive technology have created the conditions for a consumer-driven mass eugenics industry. Here is the Oxford dictionary definition of “Eugenics”: “the science of improving a population by controlled breeding to increase the occurrence of desirable heritable characteristics”. It has a bad historical reputation because authoritarian governments have denied civil liberties in the name of eugenics. But as we shall see, both the definition and the reputation of eugenics have been overtaken by advances in science, medicine and marketing. Eugenics has since reappeared in many countries in the form of voluntary genetics counselling—a medical service provided to help parents avoid genetic disorders in their children[3]; and IVF has become a sizeable industry that offers parents the genetic screening of embryos and other eugenic choices.

Genetic improvement is becoming a market phenomenon—a situation discernible as long ago as the 1980s when Daniel Kevles, the leading historian of eugenics in the USA, quoted a biotechnology expert thus: “‘Human improvement’ is a fact of life, not because of the state … but because of consumer demand.”[4]

The underlying reason why we can expect massive demand for eugenics services is the human misery caused by deleterious mutations as reported in stories about health and lifestyle. Beneficial mutations do occur, though rarely. When they do they enable adaptive mutations to spread throughout the population. But most evolution involves the sifting out of harmful mutations which occur in every generation. Most natural selection is like the Red Queen in Lewis Carroll’s Through the Looking Glass, always running in order to stay in the same place.[5] The resulting balance was upset by the scientific and industrial revolutions. Prosperity, modern medicine and the welfare state caused the mutation load in humans to rapidly increase by relaxing the relentless winnowing of large families that made life “nasty, brutish and short”.

In the past, individuals could suffer death or disability due to small genetic defects, for example in their immune systems, for which modern medicine now routinely substitutes and which welfare cushions. But even modern medicine and welfare have their limits. W.D. Hamilton stated that when the misery resulting from mutations grows too great to bear—for medical, economic or humanitarian reasons—the load will be reduced, either naturally or artificially—painfully through elevated rates of mortality, or painlessly through eugenics.[6]

Eugenics themes in the media

The public is reading and viewing a steady stream of information bearing on genetic improvement, priming a mass market for eugenics services. What follows is a small random sample of press clippings from the last two years. It indicates great advances in eugenics science and not much thinking about its social implications.

Any survey of eugenics themes in the media must discuss reports of animal breeding. One newspaper article in the Weekend Australian in August 2012 described how farmers breed animals, using the latest DNA assay techniques as well as traditional folk genetics. The article, “Breeders split on the best way to pick a champ”, reported the new computerised DNA method for choosing Merino studs for fineness and length of wool, worm resistance and fertility.[7] Another report of animal breeding was an ABC television report of how Sydney’s Taronga Zoo imported a male gorilla, Kibali, from a French zoo. He was needed to replace the ageing silverback male and continue the breeding program.[8] The zoo needed a western lowland gorilla, a subspecies or race facing extinction in its native Africa. The zoo aims to conserve population characteristics, a dimension of biodiversity. Kibali was chosen partly based on consideration of eugenics. His genetic profile showed that he had a low degree of genetic similarity (inbreeding) to the females at Taronga, reducing the risk of inbreeding depression. Also he came from a good family, because his mother showed excellent maternal behaviour. In addition he showed low aggression—dominant but not vicious.

A news report headed “Next-generation IVF makes perfect delivery” was published in July 2013.[9] A baby was born in the USA using a new IVF technique that greatly improves the chances of successful implantation while substantially lowering the cost. Previously, IVF procedures suffered high rates of failure due to embryos having the wrong number of chromosomes. Only 30 per cent of implanted embryos result in full-term pregnancies. To compensate, doctors would implant several embryos, often leading to multiple conceptions. Chromosomal defects usually lead to an embryo spontaneously aborting, but when a baby does result it has genetic disorders, such as Down and Turner syndromes. In the case being reported, thirteen eggs from the thirty-six-year-old woman were fertilised in vitro, allowed to grow for five days, then some cells were screened to count the number of chromosomes. Only three embryos had the right number. Just one of these was implanted, resulting in a baby. The procedure—pre-implantation screening—doubles the pregnancy rate and halves the miscarriage rate. The monetary cost of next-generation IVF is reduced by the falling cost of genome sequencing combined with the greater reliability of implantation, allowing more patients to afford the procedure. The article noted that in Britain doctors are permitted to screen embryos only for the most serious genetic defects. However, in principle the technique, when expanded to screen genes as well as chromosomes, would allow much greater scope for eugenics. Parents could avoid many genetic predispositions in their children, such as that to cancer.

In January 2014 the Guardian Online reported that IVF babies suffer much higher rates of complications—born pre-term, stillborn, or dying within four weeks of birth. Doctors were unsure whether the cause was the IVF procedure or was related to the infertility that led women to seek IVF.[10] Another finding indicates that the extra risk of pre-term birth does not arise with embryos kept frozen for some time before being thawed and implanted. Researchers speculate that this is due to the mother’s hormones having a chance to settle down following treatment to produce multiple eggs.

Further research in China supports this finding and adds a eugenics twist. Children resulting from frozen embryos were more socially adept than those implanted fresh after eggs were fertilised. The children also moved better, had superior communication skills and showed more independence. Allan Pacey, a fertility expert at the University of Sheffield, suggested that this was caused in part by the rigours of the thawing process. Not all embryos survive thawing, and perhaps those that do are “stronger”, he said.[11] Perhaps freezing and thawing embryos is an inadvertent eugenics process, most successful with embryos having a low mutation load. This example reminds us that genes affect many characteristics including personality and social behaviour, not just physique and intelligence.

An August 2013 article, “Take the test or hope for the best?”,[12] told the story of an Australian family carrying a rare mutation, CDH1, that bestows an 83 per cent risk of developing stomach cancer by mid-life. Modern sequencing techniques allow the faulty gene to be identified. So affected individuals could take what is a heroic preventive measure, namely removing the stomach. What was not discussed in the article was that screening of embryos would allow affected individuals to avoid passing the mutation on to their children (who otherwise have a 50 per cent chance of inheriting it). The article did note that thousands of medical genetic tests are now available in Australia, though in 2013 only fifteen such tests were covered by Medicare.

In 2011 almost 580,000 medical genetic tests were performed in Australia, 280 per cent higher than in 2006. Media coverage and medical advice are driving up the demand for genetic tests faster than the medical establishment’s capacity to provide them.[13] Mass awareness was boosted by actress Angelina Jolie’s decision to have a double mastectomy following the discovery that she carried a mutant gene that causes breast cancer.

Another Australian report in January 2014, headed “DNA sequencing to be commonplace”, described the HiSeq X Ten sequencing system, purchased by the Garvan Institute of Medical Research in Sydney.[14] This new machine is manufactured by US company Illumina, and can sequence up to 18,000 genomes per year at a cost of US$1000 each. That is one millionth the cost of sequencing the first genome. If this pace of development continues, the cost will continue to fall sharply. Professor John Mattick, head of the Garvan Institute, explained that whole-genome sequencing helps doctors prescribe drugs most compatible with the individual patient. It also allows identification of deleterious mutations. “Roughly 1 per cent of children suffer a significant genetic disease, but individually [the diseases are] rare and many are new mutations.” Already some parents of children with early onset diseases are having their genomes sequenced. [15] Identifying a mutation contributing to the disease not only aids diagnosis but “gives the parents the opportunity to avoid having further affected children”. Mattick stated that to take that step requires the parents’ genomes to be sequenced, to determine whether the mutation originated from them or occurred during reproduction.

Research reported in March 2014 found higher rates of gene defects in sperm as men age. Women pass on about fifteen new mutations to their children, but already by the age of twenty men typically pass on twenty mutations, by the age of forty this has risen to sixty-five, and by fifty-six the number has reached about 130. Children conceived by older fathers are at greater risk of autism, schizophrenia and other diseases.[16] The trend for men to delay marriage is contributing to the overall mutation load. Theoretically a greater mutation load degrades all adaptations including immune resistance and general intelligence. [17]

All the reports reviewed above discussed genetics because eugenics relies heavily on knowledge about heredity. Genetics often evokes ideas about how to reduce disease or improve some characteristic. Genetical themes are ubiquitous in the media, in relation to family history, medicine and more.

Eugenics market takes off

Taken together, these reports indicate that “slippery slope” is an inadequate metaphor for the combustible mix of genomics and reproductive technology. A better metaphor would be “launching pad”. We have ignition.

Consider what is already happening in the large IVF market. Monash IVF, an Australian company with sales of $114 million, is positioning itself to compete with larger rivals by offering the latest technology for genetically screening embryos.[18] The initial benefit is better pregnancy outcomes but as customers learn more of the science, they will inevitably wish to avoid deleterious mutations. Market-based eugenics will have taken off when the screening add-on becomes a major draw in its own right. There are early signs of this: for example a US firm, New Jersey Fertility Center, advertises pre-implantation genetic testing of embryos in conjunction with IVF. Such screening “allows for the selection of genetically normal embryos that can increase the chance of a successful pregnancy, decrease the risk of a miscarriage, minimise the risk of passing certain genetic diseases to your children and provide gender selection for family balancing”.[19] (Emphasis added.)

The Center has six offices in the USA and caters to international patients. Eugenics services are becoming commonplace, for those who can afford them. In California, Stanford Fertility and Reproductive Medicine Center (SFRMC) freezes the eggs of women who expect to delay bearing children. This is associated with IVF because if a client should seek to have her eggs thawed and fertilised, that is done in a test tube (using sperm injection).[20] When embryos are available, pre-implantation screening would be an option. Freezing eggs is becoming so popular that women in their twenties are beginning to use the procedure to insure themselves against infertility.[21] The practice is also becoming popular in Britain. A poll of British and Danish women in 2014 found the following results: 20 per cent would freeze their eggs if the need arose, 90 per cent approve of others doing so for social reasons, and 99 per cent extend the same approval for medical purposes, such as preserving fertility in case of cancer.[22]

Half of SFRMC clients work in the tech industry. Some women believe that the procedure gives them the option of a male-type career by slowing down the ticking clock. Savvy employers offer free egg freezing to attract or keep valuable female employees—a service that can cost US$20,000, which makes it unaffordable for many Americans. SFRMC also offers IVF and eugenics add-ons, such as a service for families with inherited cardiovascular disease.[23] They offer genetic counselling to help construct a pedigree and thus identify risks. Clients can also purchase IVF with pre-implantation screening to choose only those embryos without the predisposition to heart problems.[24]

In Australia, Monash IVF is looking to expand into Asian markets powered by its new screening technology. IVF has become big business largely due to demand from women who find it difficult to conceive after postponing childbearing. In 2013 9 per cent of Australian women had difficulty conceiving naturally. However, many had eggs of insufficient quality for use in IVF, with the result that demand is growing for egg donors. In the USA donors receive up to $10,000. In Australia donors are not paid, which contributes to a shortage of supply.[25] Even so the lucrative Australian fertility services market was worth over $500 million in 2013.[26] Demand continues to grow. The world market for IVF was US$9.3 billion in 2012, projected to grow to US$21.6 billion in 2020. And it has grown this large even though it has not provided many options for genetic improvement as yet.

Until the new British law, this market had grown largely under the radar of politics. But evidence has been mounting that demand for eugenics is putting pressure on legislators. A noteworthy article in 2003 by Tania Simoncelli, then a policy analyst at the International Center for Technology Assessment in Washington, decried the use of IVF with pre-implantation genetic diagnosis (screening) to select the sex of babies for non-medical purposes (as offered by the New Jersey Fertility Center). One reason is that unlike the old state-sponsored eugenics, the new type is “individual, market-based”.[27] Consumer demand can be difficult to regulate—and the stronger the demand, the more difficult the regulation. As shown with prohibition of alcohol in the USA in the interwar period, with recreational drugs from the 1960s, and with prostitution since time immemorial, it is difficult to prevent wealthy consumers of goods or services from getting what they seek from willing providers.

The particular difficulty in regulating this new eugenics market was illustrated by a 2006 court case. The Italian Constitutional Court ruled that a couple using IVF could not use pre-implantation screening to eliminate the (high) risk that their children would suffer from thalassaemia, a blood disorder that greatly increases the risk of anaemia, loss of vigour, and in severe cases organ damage, stunted growth, liver disease, heart failure and even death. What the parents wanted was to implant those of their embryos that lacked the mutation that causes thalassaemia. The woman had already had two abortions after her foetuses were diagnosed with the condition and she wanted to avoid a repeat by using pre-implantation screening. After the court ruling, the couple considered travelling abroad to have IVF with genetic screening.[28]

Their gynaecologist meanwhile reported strong demand for eugenics services. Between 1977 and 2004 his clinic in Sardinia had conducted prenatal screening of over 35,000 foetuses. When a significant genetic or chromosomal defect was found, 98 to 99 per cent of the couples involved chose abortion.[29] What we see in this episode is a new social reality emerging: the rich travel to countries that allow IVF with pre-implantation screening or what the gynaecologist called “procreative tourism”; the poor choose abortion.

A note on terminology: Let me concede at once that from the standpoint of the Catholic Church, most evangelical Christians, and other moral conservatives, all of these couples are aborting their babies because they are discarding and destroying embryos some of which might otherwise be born and live lives. That is a moral stance deserving of respect which, as will become clear later, it will receive from me throughout this article. But I don’t share their view that an embryo at the earliest stages of pregnancy—a blastocyte of 100 cells—has the same personhood and human rights as a foetus, from about eight weeks. Indeed, I think one of the advantages of pre-implantation screening is that it reduces the frequency of pregnancy terminations at a stage when the foetus has clearly human characteristics, can feel pain, and might even survive outside the womb. On that basis I reserve the word abortion for terminations of foetuses, as in the above paragraph. I believe most people in Western societies share that view. It is true that majority opinion cannot settle a moral debate of this kind, and as the science of embryology develops we will all learn more and perhaps change our views.

Majority opinion does determine market demand, and the prospects and risks of consumer-driven eugenics are large and growing. In particular, procreative tourism could combine with the growing accessibility of IVF technology to make designer babies a reality. Bob Lanza, chief scientific officer of Advanced Cell Technology, an American biotechnology company, pioneered a cloning technique that can be copied by scientists with conventional IVF training. He warned that experimental eugenics is most likely in countries where cloning is not closely regulated.[30]

Continue reading article – HERE

, ,